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Abstract. A simple formula for correlation energy Ec of the π electron systems is obtained under an approx-
imation for the electron-electron interactions. This formula is related directly to square of the bond order
matrix and the nearest-neighbor Coulomb electron-electron interaction. The influence of the correlation
energy on the band energy gap is discussed. The values of the correlation energy for polyacetylene (PA)
are calculated and can be compared with those for PA obtained by other methods, including ab initio
method.

PACS. 31.25.Qm Electron correlation calculations for polyatomic molecules – 71.45.Gm Exchange,
correlation, dielectric and magnetic response functions, plasmons

1 Introduction

The electron correlations have been a very important issue
in investigating the electronic structures of various elec-
tron systems. Especially the electron correlations have a
strong influence on the bonding properties of atoms, semi-
conductor band gap [1]. However, it is well-known that it is
very hard to completely solve a many electron system an-
alytically using a single approximation because of the ex-
change and correlation problems. Hartree-Fock (HF) ap-
proximation deals with the exchange problem between the
same spins among electrons but not resolve the correlation
between the opposite spins among electrons [2,3]. The lo-
cal density approximation (LDA) of Kohn and Sham [4]
and later the density functional theory of Hohenberg and
Kohn [5] made a contribution to the exchange-correlation
energy, denoted by Eex[ρ(�r)] using a complicated func-
tional form. In the LDA, the ground state exchange en-
ergy Ex can be expressed an integral of the charge density.
However, it is difficult to express the correlation energy
Ec in an available form of integral of the charge density
which is easy to calculate and only could be expressed as
a numerical formula with the parameter rs after a large
number of works [6].

Besides the LDA, there are other methods which can
be used to deal with the correlation effects of various elec-
tron systems such as metal and nonmetal atoms, small
and big molecules, as well as conjugated polymers. They
include unrestricted self-consistency field (SCF) Approx-
imation [3], Configuration Interaction method(CI) [7],
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coupled-cluster method [8,9] that are applied to quan-
tum chemistry and nuclear physics [10], Jastrow wave-
function method [11] that is used to describe correlations
in homogeneous fermion systems like the electron gas or
liquid He-III [12,13], the Projection Technique [14] for
the strongly correlated systems, and the GW- approxima-
tion (the one-particle Green’s function plus the screened
Coulomb interactions) by Hedin [15]. For the conjugated
polymers such as polyacetylene (CH)x (PA) or poly(p-
phenylenevinylene) (PPV), the exchange-correlation en-
ergies has been calculated by the method of the ab initio
with GW-approximation [16]. For the various metal and
nonmetal atoms, the atomic Bethe-Goldstone equation
under Hartree-Fock functions was used to calculate the
electron correlation energies of the ground states [17]. For
small or medium-size molecules(hydrocarbon molecules),
a semi-empirical SCF scheme plus CNDO or INDO ap-
proximations was used to calculate inter-atomic correla-
tions and intra-atomic correlations whose results could be
compared with ab initio method [18].

For strongly correlated systems, the on-site Hubbard
interaction U is much bigger than the nearest-neighbor
Coulomb interaction v, so the contribution of the cor-
relation energy are mainly from U . In the most conju-
gated polymers, the on-site Hubbard interaction U is not
so bigger than the nearest-neighbor interaction v because
of screening [19]. Thus both the on-site Hubbard inter-
action U and the long-range Coulomb interaction were
considered in treating with the correlation energies of the
conjugated polymers. In reference [20], authors studied
the correlation energies of polyethylene (CH2)x(PE) us-
ing the local ansatz [20]. In reference [21], authors used
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the Gutzwiller ansatz as the variational ground state and
studied correlation energy of polyacetylene (PA). First
they used the Hubbard term plus SSH Hamiltonian to dis-
cuss the correlation energy and later added the nearest-
neighbor interaction to get an effective on-site Coulomb
interaction Ueff and discuss the correlation energy again.
In reference [22], author used a variational method [23]
to study the correlation of PA in the PPP model where
both Hubbard term and the long-range Coulomb interac-
tion were included. But author did not specifically deal
with the correlation energy from the long-range Coulomb
interaction which is important to the band energy gap in
the conjugated polymers [24]. Although the importance
of the correlation energy from the long-range Coulomb
interaction has realized, there is still lack of special stud-
ies on the correlation energy mainly from the long-range
Coulomb interaction. Therefore, study of the correlation
effect due to the long-range Coulomb interaction of two
adjacent π electrons in the conjugated polymers becomes
significant.

The purpose of the present work is to study the correla-
tion energy mainly from the long-range Coulomb interac-
tion (the nearest-neighbor interaction in this study). The
starting point in this paper is the exchange-correlation
energy Eex. Although the correlation energy may be ex-
pressed as Ec =

∫
εcn(�r)d�r, εc is hard to know and hard

to obtain. Thus, available approximations will be adopted
in this study. Finally, a formula of the electron correlation
energy due to the nearest-neighbor Coulomb interaction
is obtained in an analytical form. Using this formula, it
is simple to calculate the correlation energy of a π con-
jugated polymer and available to discuss the influence of
the correlation energy on the band energy gap.

The arrangement of this paper is as follows. In Sec-
tion 2, the expression of the pair-distribution function for
the electronic systems by omitting wave function over-
lap integrals between two adjacent atomic sites is pre-
sented. In Section 3, an approximation for the electron-
electron interaction integral is made and an analytical
expression of the correlation energy for the conjugated
polymers is obtained. In Section 4, the correlation energy
calculation for one-dimensional polyacetylene (PA) chain
under tight-bind approximation (SSH Hamiltonian plus
electron-electron interactions), and results are presented,
and in Section 5 is discussion with a summary.

2 Pair-distribution function for electron
systems

The correlation effect between two electrons in a many-
electron system may be described by a two-point density-
density correlation function 〈ρ̂(�r)ρ̂(�r′)〉 at a given state
|Φ〉, where ρ̂(�r) =

∑
i δ(�r − �ri), a density operator of the

electron for a homogeneous or an inhomogeneous electron
gas system, where the index i indicates the sequence num-
ber of electrons if the system is just electron gas or the
position of the atomic sites if the system is a lattice sys-
tem. To calculate the two-point density-density correla-

tion function, one introduces the pair-distribution func-
tion which is defined as [25]

〈
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and the density distribution function of the electrons is
expressed as

〈ρ̂ (�r)〉 =
∑

σi

〈ρ̂σ
ii〉 |φi(�r)|2 +

∑

σ

N∑
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The second terms in (3) and (4) involves in the over-
lap integral effect between two electron wave functions
lying at different atomic sites. As a first order approxima-
tion and without loss generality, the second terms in (3)
and (4) could be omitted in this study. Therefore, the
pair-distribution function g(�r, �r′) from (1) becomes
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(5)

with g(�r, �r′) =
∑

σσ′ g(�r, �r′) and ρσ
ij = 〈a†

iσajσ〉. About
the pair-distribution function g(�r, �r′) there are different
approximations. For example it can be cast into an ana-
lytic expression for the homogeneous gas [26].

3 The correlation energy

The so-called correlation is the correlation hole appearing
around an electron moving in the medium. Remarkably
the correlation in fact is due to the electron-electron in-
teraction among electrons.
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In the local density approximation (LDA) the
exchange-correlation energy Exc can be described by the
exchange-correlation hole in terms of the pair-distribution
function g̃(�r, �r′) [27]. Here g̃(�r, �r′) includes the exchange-
correlation information between two spatial points �r and
�r′, and it satisfies the sum rule by the exchange-correlation
hole:

∫
d3�r′ρ

(
�r′

) [
g̃

(
�r, �r′

)
− 1

]
= −1 (6)

where ρ(�r′) = 〈Φ|ρ̂(�r′)|Φ〉 =
∑N

i,j〈ρ̂ij〉φ∗
i (�r′)φj(�r′).

Since the HF approximation has already contained
the contribution from the exchange effect between two
electrons with the same spins, the correlation energy
may be obtained by subtracting the HF pair-distribution
function gHF

σσ (�r, �r′) from the exchange-correlation energy
Exc [25,28],
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where e is the charge (negative) of the electron, �r and �r′
are the position vectors of two electrons and ρc

σσ′ is the
spin-dependent correlation hole and given by

ρc
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where
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)
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0

dλgσσ′
(
�r, �r′; λ

)
. (9)

and g̃HF
σσ′ (�r, �r′) is the pair-distribution function under the

HF approximation and has the same relation as g̃σσ′ (�r, �r′).
Here λ means the charge e2 in Coulomb interaction is
replaced by λe2 in the process of calculation.

The difference between the two pair-distribution func-
tions (g̃ − g̃HF ) has to do with the electron correlation.
The expression (7) now can be regarded as an integral be-
tween the π electron at the position �r and the charge cloud
of the spin-dependent correlation hole around the position
�r′ of the other π electron. Thus the expression (7) can be
rewritten as

Ec =
1
2

∑

σσ′

∫
d3rd3r′ρσ (�r) v

(
�r − �r′

)
ρc

σσ′

(
�r, �r′

)
(10)

where v(�r− �r′) = e2

|�r−�r′| , the Coulomb interaction between

two electrons at the positions �r and �r′.
In order to complete the calculation of the integration

of Ec, an approximation is needed to simplify the expres-
sion for Ec. In the study of polyacetylene (PA) oligomer,
two-electron interaction integral was approximated by ab-
stracting the Coulomb interaction v(�r − �r′) out of the in-
tegrand of the many-centered Coulomb integral, and the
results showed that the approximation is reasonable [29].
According to that spirit, we may take v(�r − �r′) out of
the integrand in (10). For simplicity, in this study only

consider the nearest-neighbor electron-electron interaction
between two adjacent carbon atom sites are considered,
that is, v(�r − �r′) = λv, where λ is due to the replacement
of the charge e2 in the Coulomb interaction. In this way
the expression for Ec may become
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Remarkably, it is not easy to calculate it without further
approximation. According to the sum rule (6), we have
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Using (2) and (5), the expression of Ec reduces to
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where |ΦHF 〉 is the HF ground state. The third term in
the above expression can be evaluated and it equals

∑
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Here the symmetry that ρσ
ik = ρσ

ki has been used. Finally
the correlation energy obtained is

Ec =
λv

2

[

−1
2

∑

iσ

ρσ
ii +

i�=k∑

ikσ

(ρσ
ik)2

]

. (15)

This expression (15) is the central result in this study.
Because there are no constraints to the systems in the
process of the deduction, this relation may be applied to
the various π electron systems such as C60, benzene rings,
and carbon nanotubes, etc. The correlation energy per
electron is εc = Ec/N , N is the total numbers of the car-
bon atoms in a π electron system. For a half filled system,
the number of atomic sites and the number of electrons
are equal. This relation tells us that when the averages of
the bond charge and the electron density at the site i are
known, the correlation energy can be evaluated.
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4 Calculation and results

For the π conjugated polymers, the Hamiltonian
of the system is the SSH-type Hamiltonian H0(=∑

ijσ tij(a
†
iσajσ + h.c.)) plus the electron-electron inter-

action term,

H = H0 +
1
2

∑

ijσσ′
v

(
�r − �r′

)
a†

iσaiσa†
jσ′ajσ′ (16)

where a†
iσ(ajσ) is the creation (annihilation) operator of

an π electron at the site i (j) with spin σ. v(�r − �r′) is the
electron-electron interaction, and �r (�r′) means the position
vector of an π electron at the site i (j). tij is the hopping
term. For an bond-alternated chain, ti,i+1 = t0 +(−1)iδt0
with t0 being the hopping integral without dimerization
and δt0 being the magnitude of the dimerization due to
Peierls transition.

For the one-dimensional π electron conjugated poly-
mers with N carbon atoms such as the bond-alternated
chain PA, in the bond order wave (BOW) phase, the av-
erage charge density at the site i ρσ

ii = 1/2, and the av-
erage of the bond charge density ρσ

ik = ρσ
ki = 〈a†

iσakσ〉
(here k = i + 1). Dropping the spin index because of
ρσ

ik = ρσ̄
ik = ρik, we have ρii+1 = ρ̄ + (−1)iδρ. ρσ

ij is
also called the bond-order matrix [25] (see Sect. 5 for its
discussion.) Thus (15) yields

Ec = −N
λv

2

[
1
2
− 2

(
ρ̄2 + (δρ)2

)]

. (17)

where N is the carbon atom numbers in the system, and
ρ̄ and δρ are function of λ, denoted by ρ̄(λ) and δρ(λ).
The correlation energy per π electron is then obtained by
integration over the parameter λ from 0 to 1 [25],

εc = −v

2
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λ

2
dλ − 2
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0

[
λ(ρ̄(λ))2 + λ(δρ(λ))2

]
dλ

}

.

(18)
Here ρ̄(λ) and δρ(λ) are given by the first and second
elliptic integrals [21,30]

ρ̄(λ) =
1

π
(
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)

×
[
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(√
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)

− z(λ)2K
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(19)

δρ(λ) =
z(λ)

π(1 − z (λ)2)

×
[

K
(√

1 − z(λ)2
)
− E

(√
1 − z (λ)2

)]

(20)

where z(λ) = δt/t and the parameters t and δt are deter-
mined by the relations t = t0 +λvρ̄0 and δt = δt0 +λvδρ0,
where ρ̄0 and δρ0 are the average charge density and the
change of the charge density without the Coulomb inter-
actions.

For the PA, t0 = 2.5 eV and δt0 = 2αu0 =
0.269 eV, where the electron-phonon coupling constant
α = 4.1 eV Å, and the dimerization u0 = 0.0328 Å [24].
In calculation, the lang-range interaction v is 2.4 eV [24].
Table 1 lists the values for different λ under t0, ρ̄0, δt0,
and δρ0 to calculate the average of the bond charge den-
sity ρ̄ and its change δρ from the relations (19) and (20).
Putting the resulting ρ̄ and δρ into (18) and integrat-
ing over λ from 0 to 1, the correlation energy is then
obtained. In Table 1 I(λ) = (ρ̄(λ))2 + (δρ(λ))2, and
I = 2

∫ 1

0 [λ(ρ̄(λ))2 + λ(δρ(λ))2]dλ. Table 2 lists the val-
ues of the correlation energies for PE and PA for con-
tributions from the on-site Coulomb interaction and the
nearest-neighbor Coulomb interaction, and also lists the
band energy gap E′

g in this study and that from refer-
ence [24]. Figure 1 shows the correlation energy vs. the
dimerization δt0.

To see the influence of the parameter λ on the the
bond charge density and finally on the correlation energy,
I calculate the ρ̄(λ) and δρ(λ) (see the lines from 2nd to
11th in Tab. 1). It is seen from Table 1 that the differences
about the various quantities when λ = 0 and when λ = 1
are very small: ρ̄(0) − ρ̄(1) = 0.0026, |δρ(0) − δρ(1)| =
0.0200, |I(0)− I(1)| = 0.0024. In addition, the differences
between I and I(λ) are also small: |I − I(0)| = 0.0017 eV,
|I − I(1)| = 0.0007 eV, and |εc − εc(λ = 0)| = 0.0020 eV,
|εc − εc(λ = 1)| = 0.0009 eV.

The treatment of the pair-distribution function (9),
g̃(�r, �r′) =

∫ 1

0 dλg(�r, �r′; λ) is as follows. In the formula (9),
Coulomb interaction e2 in the Coulomb interaction v(�r −
�r′) is replaced by λe2, λ changes from 0 to 1 [25]. When
v(�r− �r′) appears and changes, the electron wave functions
follows the changes. Then the electron density distribu-
tion ρ(�r) changes, and then ρij changes, which may be
expressed as ρ̄(λ) and δρ(λ) (see (19) and (20)). This
can be seen through the relations t = t0 + λvρ̄0 and
δt = δt0 + λvδρ0. Therefore the calculation of g̃(�r, �r′) is
realized actually through the calculation of ρ(�r)(λ). Ta-
ble 1 shows the results of the correlation energies with
integration about the parameter λ (see the first line in
Tab. 1).

Note that the bond charge density ρσ
ij always is less

than half and about 0.3 or so, therefore the second term
is less than the first term in the formula (15) and the cor-
relation energy is negative. The electron systems to which
the formula is suitable is supposed to be π conjugated
polymers with long chain (N is very large) with half filled
band in the ground state. For a small molecule system
such as H2, etc., and those without π electrons, the for-
mula is not suitable because the molecule like H2 is cova-
lent molecules where the charge density gathers between
two atoms. Another reason is that the approximation (11)
may bring a bigger error about the electron-electron in-
teraction integral if it is applied to small molecules like
H2 etc. It is also not suitable to the hydrocarbon such as
methane molecule that has no π electrons. In derivation
of the formula, there is no the excited states to be dealt
with.
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Table 1. To see the influence of the parameter λ on the the bond charge density and finally on the correlation energy, the ρ̄(λ)
and δρ(λ) are calculated (see the lines from 2nd to 11th in the Table). It is seen that the differences about the various quantities
when λ = 0 and when λ = 1 are very small. t0 = 2.5, u0 = 0.0328, α = 4.1 eV Å and v = 2.4 for PA. The unit is eV.

z0 ρ̄0 δρ0 λ z ρ̄(λ) δρ(λ) I(λ) I εc

0.1076 0.3144 0.0903 0.1087 –0.1696
0.1076 0.3144 0.0903 0 0.1076 0.3144 0.0903 0.1070 –0.1716

0.1 0.1129 0.3141 0.0930 0.1073 –0.1713
0.2 0.1178 0.3138 0.0956 0.1076 –0.1709
0.3 0.1225 0.3135 0.0979 0.1079 –0.1706
0.4 0.1269 0.3132 0.1001 0.1081 –0.1703
0.5 0.1311 0.3130 0.1021 0.1084 –0.1700
0.6 0.1351 0.3127 0.1039 0.1086 –0.1697
0.7 0.1389 0.3125 0.1057 0.1088 –0.1694
0.8 0.1425 0.3122 0.1073 0.1090 –0.1692
0.9 0.1460 0.3120 0.1089 0.1092 –0.1690
1.0 0.1492 0.3118 0.1103 0.1094 –0.1687

Table 2. Correlation energies εc from ninj and ni↑ni↓ for
PA and PE. Here εc(V ) means contribution from the nearest-
neighbor Coulomb interaction, εc(U) means contribution from
the on-site Hubbard interaction, and εc(U + V )means con-
tribution from both the on-site Hubbard interaction and the
nearest-neighbor Coulomb interaction. E′

g(= Eg + εc) and E′′
g

are the band energy gap. The unit is eV.

Systems PE PA

E′
g 1.7832∗

E′′
g 1.8 d

εc(V) –0.1725a –0.1696∗

εc(V) –0.1567b

εc(V) –0.0100c

εc(U) –0.5760a

εc(U) –0.6319b

εc(U) –0.6208c

εc(U+V) –0.75a

εc(U+V) –0.7885b

εc(U+V) –0.6308c

a Refers to the reference [20]; b refers to the reference [21];
c refers to the reference [22]; d refers to the reference [24];
∗ refers to the present study.

Fig. 1. εc changes with increasing dimerization δt0 (=2αu0)
under v = 2.4 eV according to the formula (18). Here v in εc(v)
means the nearest-neighbor Coulomb interaction.

5 Discussion

In the process of derivation for the formula, there are two
approximations to be used. One is the tight-bind approx-
imation where the pair-distribution function g(�r, �r′) only
involves diagonal elements ρii of charge density. Other is
that the electron-electron interaction v(�r−�r′) is drawn out
of the integrand of the integral expression for Ec (see (11)),
which was proved to be available in calculating the excita-
tion of the conjugated polymer oligomer [29]. In this way,
the correlation energy expression obtained is directly re-
lated to the diagonal site charge density ρσ

ii = 〈a†
iσaiσ〉

and square of the bond charge density ρσ
ik = 〈a†

iσakσ〉
(i �= k) that can be calculated directly from the elliptic
integrals (19) and (20). This is different from the varia-
tional methods [20–22], and also from the density matrix
renormalization group (DMRG) [31]. Due to the overlap
of the wave functions between two adjacent atomic sites,
there exists some of charge distribution between two ad-
jacent sites, and this part of the charge is called as “bond
charge density” or “bond order matrix” ρσ

ik in discussing
the π conjugated polymers. In the bond alternative chain
such as PA, the bond charge will have fluctuation along
the chain. In the single bond (that is, the longer bond), the
bond charge is decreased due to the diminish of the over-
lap, while in the double bond (that is, the shorter bond),
the bond charge is increased due to the more overlap. So
we have that ρii+1 = ρ̄ + (−1)iδρ, where δρ means the
charge fluctuation and ρ̄ means the average of the bond
charge [25,30].

If the second terms in (3) and (4) are kept, that means,
the overlap effect is considered remarkably, then the pair-
distribution function g(�r, �r′) will have both the diagonal
terms ρii and the off-diagonal terms ρij of the charge den-
sity. In this case, the electron charge density ρii on the
sites will be less than half and the bond charge density
ρij (i �= j) will be enhanced a little. It may be predictable
that when the overlap effects of the π electron waves are
considered, the correlation energies will become smaller.
Moreover, when the overlap integrals are considered, we
may discuss the contributions of the correlation energy
from the off-diagonal electron-electron interactions [30].
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It is seen from Table 2 that for an infinite polymer PE,
the correlation energy was obtained and was εc(U + V ) =
−0.75 eV [20]. According to reference [20], 77% the corre-
lation energy comes from the contribution of the operator
ni↑ni↓. Thus the remaining 23% of the correlation energy
comes from the contribution of the long-range Coulomb
interaction Vij (i �= j) or equivalently from the contribu-
tion of the operator ninj (i �= j). From this, we may have
εc(V ) = 0.23× (−0.75) = −0.1725 eV. The present corre-
lation energy (εc(V )) comes from the contribution of the
nearest-neighbor Coulomb interaction (v = 2.4 eV) be-
tween two π electrons and is −0.1696 eV. In reference [21],
the long-range interaction V (here V = Vi,i+1 = v) was
included within an “effective on-site Coulomb interaction
Ueff ” after using some approximation, and the correlation
energy εc(U+V ) both including the on-site Hubbard inter-
action U and the long-range Coulomb interaction V and
εc(U) were obtained for PA, then the correlation energy
εc(V ) from the contribution of the long-range Coulomb
interaction V may be obtained from the difference be-
tween εc(U +V ) and εc(U) and it yielded −0.1567 eV with
t0 = 2.9 eV. This value is smaller than the result of the
present study. Reference [22] used the local approach [32]
to calculate the correlation energies. However, the differ-
ence between εc(U + V ) and εc(U) was very small and
εc(V ) = −0.0100 eV with t0 = 2.5 eV in reference [22],
and this result seems so small.

It is also seen from Table 2 that the present result of
the correlation energy εc(V ) for PA is little smaller than
that for PE. Both PE and PA includes sp3 hybridization.
In the calculation of the correlation energy for PE [20],
except π electrons between two nearest-neighbor carbon
atoms, factors from the different π bonds were also taken
in numerical computation, so the more correlation effects
were included in εc(U +V ) for PE. In addition, the present
result εc(V ) = −0.1696 eV is little larger compared with
εc(V ) = −0.1567 eV from reference [21]. This may be
caused by the approximation where the overlap effect be-
tween two adjacent π electronic wave functions is omit-
ted. When the overlap effect is considered in calculation,
the bond charge density will be larger and the site charge
density will be less than half, then the result will become
smaller.

It is seen from (18) that the correlation energy is an
even function of dimerization. The trend of the curve in
Figure 1 is kind of quadratic but not complete because
there are also the dimerization parameter z in the denomi-
nators in the formula. This point can be seen by the follow-
ing way. Because z � 1, if we replace z in the denominator
in the formula by z0(= δt0/t0), then the correlation energy
εc is approximately proportional to −0.125v+ Av

2π2 + Bv
2π2 z2,

where A and B are the integral constants. At present,
there is no similar curve to compare. We may compare the
curve in Figure 1 with those in references [22] and [24].
Because the correlation energy (18) do not contain the
contribution form the on-site Hubbard interaction U , the
curve in Figure 1 is not completely like those in Figure 2 in
reference [22] and those in Figure 1 in reference [24] where
both U and the long-range interaction were included. Nev-

ertheless, it could be found here that the curve in Figure 1
still have some similar trend with them when the dimeriza-
tion value is bigger. Though the curve in Figure 2 in refer-
ence [24] was about the ground state energy vs. the dimer-
ization, the curve also reflects some information about the
correlation energy vs the dimerization because the ground
state energy contains the correlation energy contribution
in reference [24].

It is all known that when screening is weak or nor-
mal in the π electronic conjugated polymers, the electron-
electron interaction increases the dimerization and band
energy gap [30]. That is, v increases δt0 and Eg. In equi-
librium state and rigid background, the band energy gap
Eg of PA is given by 4δt = 4(δt0 + vδρ0). Under the
electron-electron interaction v, the average bond charge
density ρ̄0 decreases slightly with increasing δt0 and the
fluctuation of the bond charge density δρ0 increases with
increasing δt0. The decrease of ρ̄0 causes the bandwidth
(see t = t0 + vρ̄0) to diminish, and the increase of δρ0

make Eg increase and at the same time cause εc (see (18))
to decrease. Then it can be seen from these that v and
δρ0 are two opposite factors to the correlation energy: v
is in favor of the correlation energy but δρ0 is a disad-
vantage to the correlation energy in this study. That is
to say, on the one hand, v makes δt0 and accordingly δρ0

increase and then the band energy gap Eg increase, on the
other hand, the fluctuation δρ0 will cause the correlation
energy εc to decrease. As a result, these two opposite in-
fluence makes Eg decrease from Eg = 4δt to E′

g = Eg +εc.
When δt0 = 0.269 eV and the corresponding bond charge
density δρ0 = 0.0903, we have Eg = 1.9429 eV and
εc = −0.1696 eV. Therefore the band energy gap E′

g con-
taining the nearest-neighbor Coulomb interaction corre-
lation effect becomes 1.7832 eV. This value of the band
energy gap is close to E′′

g (1.8 eV) obtained by ab ini-
tio computation by author in reference [24] where the
screened interaction was used. These are in qualitative
agreement with experiment. In addition, E′

g increase with
increasing dimerization because the correlation energy εc

decreases with dimerization, which is consistent with re-
lation of the band gap and the dimerization.

To my knowledge, there is no similar expressions for
the correlation energy only from the nearest-neighbor
Coulomb interaction that exists in a simple form at
present. In the next study, the more electron-electron in-
teraction terms in the long-range Coulomb interaction will
be considered. In addition, although the DMRG is a strong
tool to deal with the correlation problems in a many-
particle electron system, it is basically a complicated nu-
merical calculation method but not is an analytical ex-
pression.

In summary, under the approximation (11) and the
tight-bind approximation, a formula (15) of the correla-
tion energy for the long-range (nearest-neighbor) Coulomb
interaction v for the conjugated polymers is obtained with
the rigid backbone background. Although it is simple, it is
direct and effective and easily operational in comparison
with other highly involved numerical computation meth-
ods including DMRG. The computational result for the
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correlation energy for PA is available compared to those
for PA and PE in different methods [20,21]. The band en-
ergy gap E′

g containing the correlation effect is close to
that by ab initio method containing the screening inter-
action [24]. Since the process of derivation is general, the
correlation energies of other π conjugated polymers (such
as PPV) or carbon atomic systems with π electrons (such
as C60 and carbon nanotubes) can also be calculated using
this formula which are under way.
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